First Preliminary Exam - 2022

Time: 3.00 Hrs.

Std.: XII (Sci.)

Sub.: Physics

Marks: 70

General Instructions :

The question paper is divided into four sections.

Section A: Q.No. 1 contains 10 multiple choice questions carrying 1 mark each. Q.No. 2 contains 8 very short answer type of questions

carrying 1 mark each.

- (ii) Section B: Q.No. 3 to 14 contains 12 short answer type questions carrying 2 marks each.
- (iii) Section C: Q.No. 15 to 26 contains 12 short answer type questions carrying 3 marks each.
- (iv) Section D: Q.No.27 to 31 contains 5 long answer type questions carrying 4 marks each.
- Use of log table is allowed. Use of calculator is not allowed. (2)
- Figures to the right indicate full marks. (3)
- **(4)** For each MCQ's correct answer must be written along with its alphabets. i.e. (a) / (b) / (c) / (d) etc. only first attempt will be considered for evaluation.

Section - A

Select and write the correct answer. Q. 1

(10)

- (1) As the electron revolves in the second Bohr orbit of the hydrogen atom, the corresponding current is (about) 1.3×10^{-4} A. If the area of the orbit is (about) 1.4×10^{-19} m², what is the (approximate) equivalent magnetic moment?
 - (a) $1.82 \times 10^{-23} \text{ Am}^2$ (b) $1.82 \times 10^{-15} \text{ A-m}^2$

 - (c) $2.82 \times 10^{-23} \text{ Am}^2$ (d) $2.82 \times 10^{-15} \text{ A-m}^2$
- (2) In a common-base configuration the transistor has an emitter current of 10 mA and collector current of 9.8 mA; the value of the base current is
 - (a) 0.1 mA (b) 0.2 mA
- - (c) 0.3 mA
- (d) 0.4 mA

(1)

Q.2

(3) The relation between relative permeability and magnetic susceptibility is given by	
(a) $\chi_m = \mu_r + 1$ (b) $\chi_m = -\mu_r + 1$	
(c) $\mu_r = 1 - \chi_m$ (d) $\mu_r = 1 + \chi_m$	
(4) The internal energy of one mole of argon at 300 K is	
(5) The ratio of kinetic energy to the total energy of an electron	
in a Bohr orbit of the hydrogen atom is	
(a) 1:1 (b) 1:-1 (c) 2:-1 (d) 1:-2	
(6) In series LCR circuit, at resonance, phase difference	
between current and emf of source is	
(a) π rad (b) $\frac{\pi}{2}$ rad (c) $\frac{\pi}{4}$ rad (d) zero rad	
(7) Henry is equivalent to	8
(a) ampere/second (b) ampere-second	
(c) ohm/second (d) ohm-second	
(8) For polyatomic molecule having 'F' vibrational modes,	
the ratio of two specific heats, $\frac{C_p}{C_v}$ is,	
(a) $\frac{1+F}{2+F}$ (b) $\frac{2+F}{3+F}$ (c) $\frac{4+F}{3+F}$ (d) $\frac{.5+F}{4+F}$	
(9) The magnitude of centripetal force cannot be expressed	
as	
(a) $mr\omega^2$ (b) $\frac{4\pi^2 mr}{T^2}$ (c) $m\upsilon\omega$ (d) $m\upsilon/\omega$	
(10) In which of the following substance, surface tension	
increases with increase in temperature?	
(a) Copper (b) Molton copper	
(c) Iron (d) Molton iron	
Answer the following. (8)	
(i) A metal rod of resistance of 15Ω is moved to the right at a constant speed of 60 cm/s along two parallel	
at a constant speed of oo only along two parallel	

(i) A metal rod of resistance of 15Ω is moved to the right at a constant speed of 60 cm/s along two parallel conducting rails 2 cm apart and shorted at one end. A magnetic field of magnitude 0.35 T points into the page. Calculate the induced emf.

- (ii) The maximum velocity of a particle performing SHM is 6.28 cm/s. If the length of its path is 8 cm, calculate the period.
- (iii) A gate has following truth table. State the name of the gate.

P	Q	Y
0	0	0
1	0	0
0	1	0
1	1	1

- (iv) What is Lorentz force ?
- (v) What is meant by fluid?
- (vi) How is the heat defined ?
- (vii) Define the diathermanous substance.
- (viii) In relation I = MK2, K stands for what ?

Section - B

Attempt any EIGHT of the following.

(16)

- Q. 3 Explain Thomson's model of atom.
- Q. 4 · State Faraday's law of electromagnetic induction.
- Q. 5. A drop of water of radius 6 mm breaks into number of droplets each of radius 1 mm. How many droplets will be formed?
- Q. 6 The peak value of AC through a registor of 100Ω is 2A. If the frequency of AC is 50 Hz, find the heat produced in the resistor in one cycle.
- Q. 7 Define end correction. State any two limitations of end correction.
- Q. 8 If the total energy of radiation of frequency 10¹⁴ Hz is 6.63 J, calculate the number of photons in the radiation.
- Q. 9 Compare the rate of emission of heat by a black body at 327°C with the rate of emission of heat of same body at 27°C.
- Q. 10. Find the angular speed of revolution of earth required so that the body on its surface, at equator would feel no weight. (R = 6400 km, g = 9.8 m/s²)

8552892890 save our number as *Sahaj Adhyayan* ... & message us on WhatsApp... Hi

- Q. 11. Draw a neat labelled diagram to determine the resistance of a galvanometer by using a meter bridge.
- Q. 12 Magnetic fields lines can be entirely confined within the core of a toroid, but not within a straight solenoid. Why?
- Q. 13 When water boils, why does its temperature remains constant?
- Q. 14 State Gauss's law what is a Guassian surface ?

Section - C

Attempt any EIGHT of the following.

(24)

- Q. 15 What is transformer? Explain step up and step down transformer.
- Q. 16 Find the shortest wavelength in Paschen series if the longest wavelength in Balmer series is 6563 Å.
- Q. 17 Consider the cyclic process ABCA on a sample of 2.0 mol of an ideal gas as shown in following figure, the temperatures of the gas at A and B are 300 K and 500 K respectively. A total of 1200 J heat is withdrawn from the sample in the process. Find the workdone by the gas in part BC. Take R = 8.3 J/mol-K.

- Q. 18 A circular loop of radius 9.7 cm carries a current 2.3 A. Obtain the magnetic field
 - (a) at the centre of the loop and
 - (b) at a distance of 9.7 cm from the centre of the loop but on the axis.
- Q. 19 Explain the phenomenon of surface tension on the basis of molecular theory.
- Q. 20 In an interference experiment with the distance between the slit and the screen is 1 m and the separation between the two virtual images of the slit as 0.5 cm, an

(4)

- interference pattern is obtained with a light of wavelength 3500 Å. Find the distance between 5th and 10th bright bands on the same side of central bright band.
- Q. 21 When a plate of magnetic material of size 10 cm × 0.5 cm × 0.2 cm (length, breadth and thickness respectively) is located in 'magnetising field of 0.5 × 10⁴ Am⁻¹ then magnetic moment of 5 Am² is induced in it. Find out magnetic induction in rod.
 - Q. 22 What is a junction transistor? What are its two types?
 Draw circuit symbols of each transistors.
 - Q. 23 Obtain an expression relating the torque with angular acceleration for a rigid body.
 - Q. 24 Show that in an AC circuit containing a pure inductor the voltage is ahead of current by $\frac{\pi}{2}$ rad in phase.
 - Q. 25 With a neat labelled diagram describe the apparatus to study the characteristics of photoelectric effect.
 - Q. 26 Prove the relation between pressure of the gas and speed of its molecules.

Section - D

Attempt any THREE of the following. (12)

- Q. 27 What are harmonics and overtones?

 A steel wire has a length of 12.0 m and a mass of 2.10 kg. What should be the tension in the wire so that speed of a transverse wave on the wire equals the speed of sound in dry air? (Speed of sound at 20°C=343 m/s)
- Q. 28 Define ideal simple pendulum. Deduce an expression for period of simple pendulum. Hence state the factors on which its period depends.
- Q. 29 What is a dielectric? State its two types. Give two examples in each case.
 Three capacitors are connected as shown in the figure below.

(5)

Calculate the effective capacitance between A and B.

- Q. 30 What is meant by coherent sources? Explain the two methods for obtaining coherent sources in the laboratory.
- Q. 31 How do you calculate the shunt required to increase the range and times ?

A galvanometer carries as maximum current of 15 mA, when a voltage of 75 mV is applied to it. How to convert this into a voltmeter to read upto 150 volt and into an ammeter to read upto 25 A?

