Smart 17B Marks

This Question paper shared by Ajit from Ahmednagar District. Thanks Ajit.

Std: 12th **Mathematics and Statistics**

Time: 3 Hrs.

SECTION- A

Select and write the most appropriate answer from the given alternatives for each sub-question: [16]

- $\int [\sin(\log x) + \cos(\log x)] dx =$
 - (A) x cos (log x) + c
- $(B)\sin(\log x) + c$
- (C) $\cos(\log x) + c$
- (D) $x \sin(\log x) + c$
- ii) The area enclosed between the curve $y = \cos 3x$, $0 \le x \le \frac{\pi}{6}$ and the X-axis is
 - (A) $\frac{1}{2}$ sq. units
- (B) 1 sq. units
- (C) $\frac{2}{3}$ sq. units
- (D) $\frac{1}{3}$ sq. units

- iii) The differential equation of $y = c^2 + \frac{c}{x} = ----$
 - (A) $x^4 \left(\frac{dy}{dx}\right)^2 x \frac{dy}{dx} = y$

(B) $\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0$

(C) $x^3 \left(\frac{dy}{dx}\right)^2 + x \frac{dy}{dx} = y$

(D) $\frac{d^2y}{dx^2} + \frac{dy}{dx} - y = 0$

- iv) If p.m. f. of a d.r. v. X is
- iv) If p.m. f. of a d.r. v. X is $P(X = x) = \frac{x}{n(n+1)}, \text{ for } x = 1, 2, 3, \text{----- n and } 0$ $= 0, \qquad \text{otherwise}$ then E(X) = 0 $(A) \frac{n}{1} + \frac{1}{2} \qquad (B) \frac{n}{3} + \frac{1}{6} \qquad (B) \frac{n}{3} \qquad (B) \frac{$

- (B) $\frac{n}{3} + \frac{1}{6}$ (C) $\frac{n}{2} + \frac{1}{5}$

- (D) $\frac{n}{1} + \frac{1}{3}$
- v) If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, adj $A = \begin{bmatrix} 4 & a \\ -3 & b \end{bmatrix}$, then the values of a and b are

- (D) a = 1, b = -2
- vi) If $\cos \alpha$, $\cos \beta$, $\cos \gamma$ are the directions cosines of a line, then the value of $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma$ is

- (C)3
- (D) 4

(B) $p \lor (\sim q \lor r)$

- (D) $\sim p \lor (\sim q \land \sim r)$
- The angle between the planes \bar{r} . $(\hat{i} 2\hat{j} + 3\hat{k}) + 4 = 0$ and \bar{r} . $(2\hat{i} + \hat{j} 3\hat{k}) + 7 = 0$

- (C) $\cos^{-1}\left(\frac{3}{4}\right)$
- (D) $\cos^{-1}\left(\frac{9}{14}\right)$

- i) Find the distance of the point (4, 3, 5) from the Y-axis.
- ii) Find the value of p if the equation $px^2-8xy+3y^2+14x+2y-8=0$ represents a pair of perpendicular lines.
- iii) If $s = 60 + 2t 10t^2$ is the displacement of the particle at time t, then find the rate of change in displacement
- iv) The following is the c.d.f. of a discrete r.v. X.

X	-3	-1	0	1	3	5	7	9
F(x)	0.1	0.3	0.5	0.65	0.75	0.85	0.90	1

SECTION B

Using truth table, varify that $\sim (P \lor q) \equiv \sim p \land \sim q$

Find the matrix X such that AX = B, where A = $\begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$ and B = $\begin{bmatrix} 0 & 1 \\ 2 & 4 \end{bmatrix}$

Find the cartesian co-ordinates of the point whose polar co-ordinates are $\left(\frac{3}{4}, \frac{3\pi}{4}\right)$

- If $|\bar{a}| = |\bar{b}| = 1$, \bar{a} . $\bar{b} = 0$ and $\bar{a} + \bar{b} + \bar{c} = 0$, then find $|\bar{c}|$.
- If $\bar{c} = 3\bar{a} 2\bar{b}$, then prove that $[\bar{a} \ \bar{b} \ \bar{c}] = 0$ 7)
- Find the acute angle between lines $\frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-3}{2}$ and $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{1}$

[16]

9)	Differentiate the following w.r.t. $x : \cos^{-1} (4 \cos^3 x - 3 \cos x)$

- Evaluate : $\int \sqrt{1 \cos 2x} \, dx$ 10)
- Evaluate : $\int \frac{1}{1+r-r^2} dx$ 11)
- Evaluate: $\int_{-3}^{3} \frac{x^3}{9-x^2} dx$

Anandrao Phalke Patil Jr.College Of Science, Karjat

Find the area of the region bounded by the following curve, X -axis and the given lines: $y^2 = 16x$,

 $\mathbf{x} =$

- Evaluate: $\int_{-3}^{3} \frac{x^3}{9-x^2} dx$ Anand Open Find the area of the region bounded by the following differential equation. In Solve the following differential equations: Solve the following differential equation. $\log \left(\frac{dy}{dx}\right) = 2x + 3y$

SECTION C

[24]

- Construct the switching circuit of the following : $(p \land q) \lor (\sim p) \lor (p \land \sim q)$
- Find the general solution of $\tan^3 \theta = 3 \tan \theta$
- Scontactus (%) Find the vector projection of \overline{PQ} on \overline{AB} where P, Q, A, B are the points (-2, 1, 3), (3, 2, 5), (4, -3, 5) and (7, -5, -1) respectively.
 - Show that vector area of a quadrilateral ABCD is $\frac{1}{2}$ ($\overline{AC} \times \overline{BD}$), where AC and BD are its diagonals.
- If lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$ and $\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1}$ intersect each other, then find k.
- Find the cartesian equation of the plane $\bar{r} = \left(5\hat{\imath} 2\hat{\jmath} 3\hat{k}\right) + \lambda\left(\hat{\imath} + \hat{\jmath} + \hat{k}\right) + \mu(\hat{\imath} 2\hat{\jmath} + 3\hat{k})$
- If $log_{10}\left(\frac{x^3-y^3}{x^3+y^3}\right) = 2$, show that $\frac{dy}{dx} = \frac{-99x^2}{101v^2}$
- The surface area of a spherical balloon is increasing at the rate of 2 cm² / sec. At what reate the volume of the balloon is increasing when radius of the balloon is 6 cm?
- Solve the differential equation: $\frac{dy}{dx} + y = e^{-x}$
- ii) P(|X| < 1)

SECTION D

[20]

- Show that vector area of a quadrilateral Algorithms in the surface area of a quadrilateral Algorithms in the surface area of a quadrilateral Algorithms in the surface area of a spherical balloon is increasing when radius of the balloon is in Find the inverse of $A = \begin{bmatrix} cos\theta & -sin\theta & 0 \\ sin\theta & cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$ by elementary row transformations. In $\triangle ABC$, prove that $tan\left(\frac{B-C}{2}\right) = \left(\frac{b-c}{b+c}\right)\cot\frac{A}{2}$

 - Show that a homogeneous equation of degree 2 in x and y i.e. $ax^2 + 2hxy + by^2 = 0$ represents a pair of lines
 - Maximize: Z = 3x + 5y subject to $x + 4y \le 24$, $3x + y \le 21$, $x + y \le 9$, $x \ge 0$, $y \ge 0$. Also find maximum
 - Verify Lagrange's mean value theorem for the following functions.
 - Prove that : $\int \sqrt{a^2 x^2} \, dx = \frac{x}{2} \sqrt{a^2 x^2} + \frac{a^2}{2} \sin^{-1}(\frac{x}{2}) + c$
 - In binomial distribution with five Bernoulli's trials, probability of one and two success are 0.4096 and 0.2048 respectively. Find probability of success.
 - Show that: $\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx$, if f(x) is an even function 34) if f(x) is an odd function