

8552892890 save our number as *Sahaj Adhyayan* ... & message us on WhatsApp... Hi

	This Question paper shared by Ajit from Ahmednagar District. Thanks Ajit.
12)	Differentiate the following w.r.t. x: $\cot^3 [\log (x^3)]$
13)	Evaluate : $\int \frac{\cos \sqrt{x}}{\sqrt{x}} dx$
14)	Solve the differential equation. $\sec^2 x \tan y dx + \sec^2 y \tan x dy = 0$
_	SECTION C
× Atte	empt any EIGHT of the following questions: [24]
	Examine whether the following statement pattern is a tautology or a contradiction or a contingency:
Ч ^г	$(\sim n \rightarrow q) \land (n \land r)$
4 [6]	Find the general solution of $\sec^2 2\theta = 1 - \tan 2\theta$
	With usual notations prove that $2\left\{a \sin^2 \frac{c}{2} + c \sin^2 \frac{A}{2}\right\} = a - b + c$.
© 18)	If O is the foot of the perpendicular from P(2, 4, 3) on the line joining the points A(1, 2, 4) and B(3, 4, 5).
is is	find coordinates of O .
⊐ 19)	Prove that $\begin{bmatrix} \overline{a} & \overline{b} + \overline{c} & \overline{a} + \overline{b} + \overline{c} \end{bmatrix} = 0$
020)	Find the vector equation of the plane which makes intercepts 1, 1, 1 on the co-ordinates axes
$\overline{\mathbf{b}}_{21}$	If $y = f(u)$ is a differentiable function of u and $u = g(x)$ is a differentiable function of x, then prove that the
Ŭ ⁻	composite function $y = f[g(x)]$ is a differentiable function of x and $\frac{dy}{dx} = \frac{dy}{dx} \times \frac{du}{dx}$
.22)	Find the value of x for which the function $f(x) = x^3 - \frac{12x^2}{14x} - \frac{14x}{14} + \frac{13}{12}$ is increasing
(\square_{23}^{22})	If each side of an equilateral triangle increases at the rate of $\sqrt{2}$ cm/sec. find the rate of increase of its area.
–	when its side is of length 3 cm
ш ш24)	Obtain the differential equation by eliminating arbitrary constant A and B.
Z	$y = A \cos (\log x) + B \sin (\log x)$
1 25)	Solve : $x + y \frac{dy}{dx} = \sec (x^2 + y^2)$ Anandrao Phalke Patil Jr.College Of Science, Karjat
<u>_</u> 20)	A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $\frac{1}{100}$. Find the
Ч ²⁰⁾ Б	A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $\frac{1}{100}$. Find the probability that he will win a prize at least once.
th, MH	A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $\frac{1}{100}$. Find the probability that he will win a prize at least once. SECTION D
HZ Thy Atte	A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $\frac{1}{100}$. Find the probability that he will win a prize at least once. SECTION D Example 10 E
HW (127) (127) (27)	A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $\frac{100}{100}$. Find the probability that he will win a prize at least once. SECTION D (20) Solve the following equations by the method of reduction:
111 121 121 121 121 121 121 121 121 121	A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $\frac{100}{100}$. Find the probability that he will win a prize at least once. SECTION D empt any FIVE of the following questions: [20] Solve the following equations by the method of reduction: x + 3y + 2z = 6, $3x - 2y + 5z = 5$, and $2x - 3y + 6z = 7$
HW (4121 27) 1111 28)	A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $\frac{1}{100}$. Find the probability that he will win a prize at least once. SECTION D Section 1 Solve the following equations by the method of reduction: x + 3y + 2z = 6, $3x - 2y + 5z = 5$, and $2x - 3y + 6z = 7Prove that three vectors \overline{a}, \overline{b} and \overline{c} are coplanar, if and only if there exists a non-zero linear combination$
0th, 11th, 12th, 12th, 11th, 12th, 1	A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $\frac{100}{100}$. Find the probability that he will win a prize at least once. SECTION D empt any FIVE of the following questions: [20] Solve the following equations by the method of reduction: x + 3y + 2z = 6, $3x - 2y + 5z = 5$, and $2x - 3y + 6z = 7Prove that three vectors \bar{a}, \bar{b} and \bar{c} are coplanar, if and only if there exists a non-zero linear combinationx\bar{a} + y\bar{b} + z\bar{c} = 0 with (x, y, z) \neq (0, 0, 0).$
HW (1111, 121, 121, 121, 121, 121, 121, 12	A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $\frac{1}{100}$. Find the probability that he will win a prize at least once. SECTION D Empt any FIVE of the following questions: [20] Solve the following equations by the method of reduction: x + 3y + 2z = 6, $3x - 2y + 5z = 5$, and $2x - 3y + 6z = 7Prove that three vectors \bar{a}, \bar{b} and \bar{c} are coplanar, if and only if there exists a non-zero linear combinationx\bar{a} + y\bar{b} + z\bar{c} = 0 with (x, y, z) \neq (0, 0, 0).Show that lines \bar{r} = (\hat{i} + \hat{j} - \hat{k}) + \lambda(2\hat{i} - 2\hat{j} + \hat{k}) and \bar{r} = (4\hat{i} - 3\hat{j} + 2\hat{k}) + \mu(\hat{i} - 2\hat{j} + 2\hat{k}) are$
for 10th, 11th, 12th, 10th, 10	A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $\frac{1}{100}$. Find the probability that he will win a prize at least once. SECTION D Empt any FIVE of the following questions: [20] Solve the following equations by the method of reduction: x + 3y + 2z = 6, $3x - 2y + 5z = 5$, and $2x - 3y + 6z = 7Prove that three vectors \bar{a}, \bar{b} and \bar{c} are coplanar, if and only if there exists a non-zero linear combinationx\bar{a} + y\bar{b} + z\bar{c} = 0 with (x, y, z) \neq (0, 0, 0).Show that lines \bar{r} = (\hat{i} + \hat{j} - \hat{k}) + \lambda(2\hat{i} - 2\hat{j} + \hat{k}) and \bar{r} = (4\hat{i} - 3\hat{j} + 2\hat{k}) + \mu(\hat{i} - 2\hat{j} + 2\hat{k}) arecoplanar, Find the equation of the plane determined by them.$
rs for 10th, 11th, 12th, MH, 1300 (25) (25) (25) (25) (25) (25) (25) (25)	A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $\frac{1}{100}$. Find the probability that he will win a prize at least once. SECTION D Empt any FIVE of the following questions: [20] Solve the following equations by the method of reduction: x + 3y + 2z = 6, $3x - 2y + 5z = 5$, and $2x - 3y + 6z = 7Prove that three vectors \bar{a}, \bar{b} and \bar{c} are coplanar, if and only if there exists a non-zero linear combinationx\bar{a} + y\bar{b} + z\bar{c} = 0 with (x, y, z) \neq (0, 0, 0).Show that lines \bar{r} = (\hat{i} + \hat{j} - \hat{k}) + \lambda(2\hat{i} - 2\hat{j} + \hat{k}) and \bar{r} = (4\hat{i} - 3\hat{j} + 2\hat{k}) + \mu(\hat{i} - 2\hat{j} + 2\hat{k}) arecoplanar, Find the equation of the plane determined by them.A company manufactures bicycles and tricycles, each of which must be processed through two machines A$
pers for 10th, 11th, 12th, MH (52) (52) (52) (52) (52) (52) (52) (52)	A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $\frac{1}{100}$. Find the probability that he will win a prize at least once. SECTION D Empt any FIVE of the following questions: $x + 3y + 2z = 6, 3x - 2y + 5z = 5, and 2x - 3y + 6z = 7$ Prove that three vectors \overline{a} , \overline{b} and \overline{c} are coplanar, if and only if there exists a non-zero linear combination $x\overline{a} + y\overline{b} + z\overline{c} = 0$ with $(x, y, z) \neq (0, 0, 0)$. Show that lines $\overline{r} = (\hat{i} + \hat{j} - \hat{k}) + \lambda(2\hat{i} - 2\hat{j} + \hat{k})$ and $\overline{r} = (4\hat{i} - 3\hat{j} + 2\hat{k}) + \mu(\hat{i} - 2\hat{j} + 2\hat{k})$ are coplanar, Find the equation of the plane determined by them. A company manufactures bicycles and tricycles, each of which must be processed through two machines A and B. Maximum availability of Machine A and B is respectively 120 and 180 hours. Manufacturing a
Papers for 10th, 11th, 12th, MH (52) (12) (12) (12) (12) (12) (12) (12) (1	A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $\frac{100}{100}$. Find the probability that he will win a prize at least once. SECTION D Section D Solve the following equations by the method of reduction: x + 3y + 2z = 6, $3x - 2y + 5z = 5$, and $2x - 3y + 6z = 7Prove that three vectors \bar{a}, \bar{b} and \bar{c} are coplanar, if and only if there exists a non-zero linear combinationx\bar{a} + y\bar{b} + z\bar{c} = 0 with (x, y, z) \neq (0, 0, 0).Show that lines \bar{r} = (\hat{i} + \hat{j} - \hat{k}) + \lambda(2\hat{i} - 2\hat{j} + \hat{k}) and \bar{r} = (4\hat{i} - 3\hat{j} + 2\hat{k}) + \mu(\hat{i} - 2\hat{j} + 2\hat{k}) arecoplanar, Find the equation of the plane determined by them.A company manufactures bicycles and tricycles, each of which must be processed through two machines Aand B. Maximum availability of Machine A and B is respectively 120 and 180 hours. Manufacturing abicycle requires 6 hours on Machine A and 3 hours on Machine B. Manufacturing a tricycle requires 4$
on Papers for 10th, 11th, 12th, MH (52) (52) (52) (52) (52) (52) (52) (52)	A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $\frac{1}{100}$. Find the probability that he will win a prize at least once. SECTION D Section D Solve the following equations by the method of reduction: x + 3y + 2z = 6, $3x - 2y + 5z = 5$, and $2x - 3y + 6z = 7Prove that three vectors \bar{a}, \bar{b} and \bar{c} are coplanar, if and only if there exists a non-zero linear combination x\bar{a} + y\bar{b} + z\bar{c} = 0 with (x, y, z) \neq (0, 0, 0).Show that lines \bar{r} = (\hat{i} + \hat{j} - \hat{k}) + \lambda(2\hat{i} - 2\hat{j} + \hat{k}) and \bar{r} = (4\hat{i} - 3\hat{j} + 2\hat{k}) + \mu(\hat{i} - 2\hat{j} + 2\hat{k}) are coplanar, Find the equation of the plane determined by them.A company manufactures bicycles and tricycles, each of which must be processed through two machines A and B. Maximum availability of Machine A and B is respectively 120 and 180 hours. Manufacturing a bicycle requires 6 hours on Machine A and 3 hours on Machine B. Manufacturing a tricycle requires 4 hours on Machine A and 10 hours on Machine B. If profits are Rs.180/- for a bicycle and Rs.220/- for a$
stion Papers for 10th, 11th, 12th, MH, 12th, M	A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $\frac{1}{100}$. Find the probability that he will win a prize at least once. SECTION D Sempt any FIVE of the following questions: [20] Solve the following equations by the method of reduction: x + 3y + 2z = 6, $3x - 2y + 5z = 5$, and $2x - 3y + 6z = 7Prove that three vectors \bar{a}, \bar{b} and \bar{c} are coplanar, if and only if there exists a non-zero linear combinationx\bar{a} + y\bar{b} + z\bar{c} = 0 with (x, y, z) \neq (0, 0, 0).Show that lines \bar{r} = (\hat{i} + \hat{j} - \hat{k}) + \lambda(2\hat{i} - 2\hat{j} + \hat{k}) and \bar{r} = (4\hat{i} - 3\hat{j} + 2\hat{k}) + \mu(\hat{i} - 2\hat{j} + 2\hat{k}) arecoplanar, Find the equation of the plane determined by them.A company manufactures bicycles and tricycles, each of which must be processed through two machines Aand B. Maximum availability of Machine A and B is respectively 120 and 180 hours. Manufacturing abicycle requires 6 hours on Machine A and 3 hours on Machine B. Manufacturing a tricycle requires 4hours on Machine A and 10 hours on Machine B. If profits are Rs.180/- for a bicycle and Rs.220/- for atricycle. Determine the number of bicycle and tricycles that should be manufactured in order to maximize$
Lestion Papers for 10th, 11th, 12th, MH (52) (52) (52) (52) (52) (52) (52) (52)	A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $\frac{1}{100}$. Find the probability that he will win a prize at least once. SECTION D empt any FIVE of the following questions: [20] Solve the following equations by the method of reduction: $x + 3y + 2z = 6$, $3x - 2y + 5z = 5$, and $2x - 3y + 6z = 7$ Prove that three vectors \bar{a} , \bar{b} and \bar{c} are coplanar, if and only if there exists a non-zero linear combination $x\bar{a} + y\bar{b} + z\bar{c} = 0$ with $(x, y, z) \neq (0, 0, 0)$. Show that lines $\bar{r} = (\hat{t} + \hat{j} - \hat{k}) + \lambda(2\hat{t} - 2\hat{j} + \hat{k})$ and $\bar{r} = (4\hat{t} - 3\hat{j} + 2\hat{k}) + \mu(\hat{t} - 2\hat{j} + 2\hat{k})$ are coplanar, Find the equation of the plane determined by them. A company manufactures bicycles and tricycles, each of which must be processed through two machines A and B. Maximum availability of Machine A and B is respectively 120 and 180 hours. Manufacturing a bicycle requires 6 hours on Machine A and 3 hours on Machine B. If profits are Rs.180/- for a bicycle and Rs.220/- for a tricycle. Determine the number of bicycle and tricycles that should be manufactured in order to maximize the profit.
¹⁰⁰ Control	A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $\frac{1}{100}$. Find the probability that he will win a prize at least once. SECTION D Section and Five of the following questions: [20] Solve the following equations by the method of reduction: x + 3y + 2z = 6, $3x - 2y + 5z = 5$, and $2x - 3y + 6z = 7Prove that three vectors \bar{a}, \bar{b} and \bar{c} are coplanar, if and only if there exists a non-zero linear combination x\bar{a} + y\bar{b} + z\bar{c} = 0 with (x, y, z) \neq (0, 0, 0).Show that lines \bar{r} = (\hat{i} + \hat{j} - \hat{k}) + \lambda(2\hat{i} - 2\hat{j} + \hat{k}) and \bar{r} = (4\hat{i} - 3\hat{j} + 2\hat{k}) + \mu(\hat{i} - 2\hat{j} + 2\hat{k}) are coplanar, Find the equation of the plane determined by them.A company manufactures bicycles and tricycles, each of which must be processed through two machines A and B. Maximum availability of Machine A and B is respectively 120 and 180 hours. Manufacturing a bicycle requires 6 hours on Machine A and 3 hours on Machine B. Manufacturing a tricycle requires 4 hours on Machine A and 10 hours on Machine B. If profits are Rs.180/- for a bicycle and Rs.220/- for a tricycle. Determine the number of bicycle and tricycles that should be manufactured in order to maximize the profit.If u and v are two functions of x, then prove that \int u. vdx = u \int vdx - \int (\frac{d}{dx}(u) \int v dx) dx$
ice Question Papers for 10th, 11th, 12th, MH (52) (52) (52) (52) (52) (52) (52) (52)	A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $\frac{1}{100}$. Find the probability that he will win a prize at least once. SECTION D empt any FIVE of the following questions: [20] Solve the following equations by the method of reduction: $x + 3y + 2z = 6$, $3x - 2y + 5z = 5$, and $2x - 3y + 6z = 7$ Prove that three vectors \bar{a} , \bar{b} and \bar{c} are coplanar, if and only if there exists a non-zero linear combination $x\bar{a} + y\bar{b} + z\bar{c} = 0$ with $(x, y, z) \neq (0, 0, 0)$. Show that lines $\bar{r} = (\hat{t} + \hat{j} - \hat{k}) + \lambda(2\hat{\iota} - 2\hat{j} + \hat{k})$ and $\bar{r} = (4\hat{\iota} - 3\hat{j} + 2\hat{k}) + \mu(\hat{\iota} - 2\hat{j} + 2\hat{k})$ are coplanar, Find the equation of the plane determined by them. A company manufactures bicycles and tricycles, each of which must be processed through two machines A and B. Maximum availability of Machine A and B is respectively 120 and 180 hours. Manufacturing a bicycle requires 6 hours on Machine A and 3 hours on Machine B. Manufacturing a tricycle requires 4 hours on Machine A and 10 hours on Machine B. If profits are Rs.180/- for a bicycle and Rs.220/- for a tricycle. Determine the number of bicycle and tricycles that should be manufactured in order to maximize the profit. If u and v are two functions of x, then prove that $\int u. vdx = u \int vdx - \int (\frac{d}{dx}(u) \int v dx) dx$ Hence, Evaluate $\int x \log x dx$
actice Question Papers for 10th, 11th, 12th, MH (15, 12th, MH, 12th, MH, 135) (15, 12th, MH, 12th, MH, 135) (15, 12th, MH, 135) (15, 12th, MH, 135) (15, 12th, 12th, 135) (15,	A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $\frac{1}{100}$. Find the probability that he will win a prize at least once. SECTION D Sempt any FIVE of the following questions: [20] Solve the following equations by the method of reduction: x + 3y + 2z = 6, $3x - 2y + 5z = 5$, and $2x - 3y + 6z = 7Prove that three vectors \bar{a}, \bar{b} and \bar{c} are coplanar, if and only if there exists a non-zero linear combination x\bar{a} + y\bar{b} + z\bar{c} = 0 with (x, y, z) \neq (0, 0, 0).Show that lines \bar{r} = (\hat{r} + \hat{j} - \hat{k}) + \lambda(2\hat{r} - 2\hat{j} + \hat{k}) and \bar{r} = (4\hat{r} - 3\hat{j} + 2\hat{k}) + \mu(\hat{r} - 2\hat{j} + 2\hat{k}) are coplanar, Find the equation of the plane determined by them.A company manufactures bicycles and tricycles, each of which must be processed through two machines A and B. Maximum availability of Machine A and B is respectively 120 and 180 hours. Manufacturing a bicycle requires 6 hours on Machine A and 3 hours on Machine B. Manufacturing a tricycle requires 4 hours on Machine A and 10 hours on Machine B. If profits are Rs.180/- for a bicycle and Rs.220/- for a tricycle. Determine the number of bicycle and tricycles that should be manufactured in order to maximize the profit.If u and v are two functions of x, then prove that \int u. vdx = u \int vdx - \int (\frac{d}{dx}(u) \int v dx) dxHence, Evaluate \int x \log x dxFind the area of the region lying between the parabolas 4y^2 = 9x and 3x^2 = 16y.$
Practice Question Papers for 10th, 11th, 12th, MH (15, 12th, MH, 1	A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $\frac{1}{100}$. Find the probability that he will win a prize at least once. SECTION D Sempt any FIVE of the following questions: [20] Solve the following equations by the method of reduction: x + 3y + 2z = 6, $3x - 2y + 5z = 5$, and $2x - 3y + 6z = 7Prove that three vectors \overline{a}, \overline{b} and \overline{c} are coplanar, if and only if there exists a non-zero linear combination x\overline{a} + y\overline{b} + z\overline{c} = 0 with (x, y, z) \neq (0, 0, 0).Show that lines \overline{r} = (\hat{t} + \hat{j} - \hat{k}) + \lambda(2\hat{t} - 2\hat{j} + \hat{k}) and \overline{r} = (4\hat{t} - 3\hat{j} + 2\hat{k}) + \mu(\hat{t} - 2\hat{j} + 2\hat{k}) are coplanar, Find the equation of the plane determined by them.A company manufactures bicycles and tricycles, each of which must be processed through two machines A and B. Maximum availability of Machine A and B is respectively 120 and 180 hours. Manufacturing a bicycle requires 6 hours on Machine A and 3 hours on Machine B. Manufacturing a tricycle requires 4 hours on Machine A and 10 hours on Machine B. If profits are Rs.180/- for a bicycle and Rs.220/- for a tricycle. Determine the number of bicycle and tricycles that should be manufactured in order to maximize the profit.If u and v are two functions of x, then prove that \int u. vdx = u \int vdx - \int (\frac{d}{dx}(u) \int v dx) dxHence, Evaluate \int x \log x dxFind the area of the region lying between the parabolas 4y^2 = 9x and 3x^2 = 16y.Find the area of the region lying between the parabolas 4y^2 = 9x and 3x^2 = 16y.$
e Practice Question Papers for 10th, 11th, 12th, MH (15, 12th, MH, 13, 12th, MH, 13, 12th, MH, 13, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $\frac{1}{100}$. Find the probability that he will win a prize at least once. SECTION D Setup any FIVE of the following questions: [20] Solve the following equations by the method of reduction: $x + 3y + 2z = 6$, $3x - 2y + 5z = 5$, and $2x - 3y + 6z = 7$ Prove that three vectors \bar{a} , \bar{b} and \bar{c} are coplanar, if and only if there exists a non-zero linear combination $x\bar{a} + y\bar{b} + z\bar{c} = 0$ with $(x, y, z) \neq (0, 0, 0)$. Show that lines $\bar{r} = (\hat{t} + \hat{j} - \hat{k}) + \lambda(2\hat{t} - 2\hat{j} + \hat{k})$ and $\bar{r} = (4\hat{t} - 3\hat{j} + 2\hat{k}) + \mu(\hat{t} - 2\hat{j} + 2\hat{k})$ are coplanar, Find the equation of the plane determined by them. A company manufactures bicycles and tricycles, each of which must be processed through two machines A and B. Maximum availability of Machine A and B is respectively 120 and 180 hours. Manufacturing a bicycle requires 6 hours on Machine A and 3 hours on Machine B. Manufacturing a tricycle requires 4 hours on Machine A and 10 hours on Machine B. If profits are Rs.180/- for a bicycle and Rs.220/- for a tricycle. Determine the number of bicycle and tricycles that should be manufactured in order to maximize the profit. If u and v are two functions of x, then prove that $\int u. vdx = u \int vdx - \int (\frac{d}{dx}(u) \int v dx) dx$ Hence, Evaluate $\int x \log x dx$ Find the area of the region lying between the parabolas $4y^2 = 9x$ and $3x^2 = 16y$. Find the area of the region lying between the parabolas $4y^2 = 9x$ and $3x^2 = 16y$. Find the expected value, variance and standard deviation of r.v. X for the following p.m.f.
Free Practice Question Papers for 10th, 11th, 12th, MH (15, 12th, MH (15, 12th, MH (15, 12th, MH (15, 12th, MH) (15, 12th, MH)	A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $\frac{1}{100}$. Find the probability that he will win a prize at least once. SECTION D Sent any FIVE of the following questions: [20] Solve the following equations by the method of reduction: x + 3y + 2z = 6, $3x - 2y + 5z = 5$, and $2x - 3y + 6z = 7Prove that three vectors \bar{a}, \bar{b} and \bar{c} are coplanar, if and only if there exists a non-zero linear combination x\bar{a} + y\bar{b} + z\bar{c} = 0 with (x, y, z) \neq (0, 0, 0).Show that lines \bar{r} = (\hat{i} + \hat{j} - \hat{k}) + \lambda(2\hat{i} - 2\hat{j} + \hat{k}) and \bar{r} = (4\hat{i} - 3\hat{j} + 2\hat{k}) + \mu(\hat{i} - 2\hat{j} + 2\hat{k}) are coplanar, Find the equation of the plane determined by them.A company manufactures bicycles and tricycles, each of which must be processed through two machines A and B. Maximum availability of Machine A and B is respectively 120 and 180 hours. Manufacturing a bicycle requires 6 hours on Machine A and 3 hours on Machine B. Manufacturing a tricycle requires 4 hours on Machine A and 10 hours on Machine B. If profits are Rs.180/- for a bicycle and Rs.220/- for a tricycle. Determine the number of bicycle and tricycles that should be manufactured in order to maximize the profit.If u and v are two functions of x, then prove that \int u. vdx = u \int vdx - \int (\frac{d}{dx}(u) \cdot \int v dx) dxHence, Evaluate \int x \log x dxFind the area of the region lying between the parabolas 4y^2 = 9x and 3x^2 = 16y.Find the area of the region lying between the parabolas 4y^2 = 9x and 3x^2 = 16y.Find the expected value, variance and standard deviation of r.v. X for the following p.m.f.\overline{X = x} 0 1 2 3 4 5 1 1 2 3 4 5 1 1 1 1 1 1 1 1 1$
Free Practice Question Papers for 10th, 11th, 12th, MH (15, 12th, MH, 13th, 11th, 12th, MH, 13th, 13th	A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $\frac{1}{100}$. Find the probability that he will win a prize at least once. SECTION D (20) Solve the following equations by the method of reduction: x + 3y + 2z = 6, $3x - 2y + 5z = 5$, and $2x - 3y + 6z = 7Prove that three vectors \overline{a}, \overline{b} and \overline{c} are coplanar, if and only if there exists a non-zero linear combination x\overline{a} + y\overline{b} + z\overline{c} = 0 with (x, y, z) \neq (0, 0, 0).Show that lines \overline{r} = (\hat{t} + \hat{f} - \hat{k}) + \lambda(2\hat{t} - 2\hat{f} + \hat{k}) and \overline{r} = (4\hat{t} - 3\hat{f} + 2\hat{k}) + \mu(\hat{t} - 2\hat{f} + 2\hat{k}) are coplanar, Find the equation of the plane determined by them.A company manufactures bicycles and tricycles, each of which must be processed through two machines A and B. Maximum availability of Machine A and B is respectively 120 and 180 hours. Manufacturing a bicycle requires 6 hours on Machine A and 3 hours on Machine B. Manufacturing a tricycle requires 4 hours on Machine A and 10 hours on Machine B. If profits are Rs.180/- for a bicycle and Rs.220/- for a tricycle. Determine the number of bicycle and tricycles that should be manufactured in order to maximize the profit.If u and v are two functions of x, then prove that \int u.vdx = u \int vdx - \int (\frac{d}{dx}(u) \int v dx) dxHence, Evaluate \int x \log x dxFind the area of the region lying between the parabolas 4y^2 = 9x and 3x^2 = 16y.Find the area of the region lying between the parabolas 4y^2 = 9x and 3x^2 = 16y.Find the area of the region lying between the parabolas 4y^2 = 9x and 3x^2 = 16y.Find the area of the region lying between the parabolas 4y^2 = 9x and 3x^2 = 16y.Find the area of the region lying between the parabolas 4y^2 = 9x and 3x^2 = 16y.Find the area of the region lying between the parabolas 4y^2 = 132.Evaluate \int x \log x dx$
Free Practice Question Papers for 10th, 11th, 12th, MH (15, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12	A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $\frac{1}{100}$. Find the probability that he will win a prize at least once. SECTION D (20) Solve the following equations by the method of reduction: x + 3y + 2z = 6, $3x - 2y + 5z = 5$, and $2x - 3y + 6z = 7Prove that three vectors \overline{a}, \overline{b} and \overline{c} are coplanar, if and only if there exists a non-zero linear combination x\overline{a} + y\overline{b} + z\overline{c} = 0 with (x, y, z) \neq (0, 0, 0).Show that lines \overline{r} = (\hat{i} + \hat{j} - \hat{k}) + \lambda(2\hat{i} - 2\hat{j} + \hat{k}) and \overline{r} = (4\hat{i} - 3\hat{j} + 2\hat{k}) + \mu(\hat{i} - 2\hat{j} + 2\hat{k}) are coplanar, Find the equation of the plane determined by them.A company manufactures bicycles and tricycles, each of which must be processed through two machines A and B. Maximum availability of Machine A and B is respectively 120 and 180 hours. Manufacturing a bicycle requires 6 hours on Machine A and 3 hours on Machine B. Manufacturing a tricycle requires 4 hours on Machine A and 10 hours on Machine B. If profits are Rs.180/- for a bicycle and Rs.220/- for a tricycle. Determine the number of bicycle and tricycles that should be manufactured in order to maximize the profit.If u and v are two functions of x, then prove that \int u.vdx = u \int vdx - \int (\frac{d}{dx}(u) \int v dx) dxHence, Evaluate \int x \log x dxFind the area of the region lying between the parabolas 4y^2 = 9x and 3x^2 = 16y.Find the area of the region lying between the parabolas 4y^2 = 9x and 3x^2 = 16y.Find the area of the region lying between the parabolas 4y^2 = 9x and 3x^2 = 16y.Find the equation of the curve which passes through the origin and has the slope x + 3y - 1 at any point (x u) on it.$

8552892890 save our number as *Sahaj Adhyayan* ... & message us on WhatsApp... Hi